One-Dimensional Phonon State and Superfluidity of ⁴He Fluid Nanotubes

Nagoya University

N. Wada T. Matsushita M. Hieda D. Hirashima R. Toda Y. Minato

<u>Outline</u>

- Nano-Extreme Conditions of N-D nanopores
- Realization of 1D state of ⁴He Bose fluids
- Torsional oscillator experiment for ⁴He fluid nanotubes in 1D state
- Possible reason of superfluidity in 1D state

La Print Co. No. of Const.

N-Dimensional Nanopores

Evidence of 3D Transition in 3D Nanopores

□ Superfluidity in *N*-Dimension

3D

Long Range Ordering

C peak(T_c) = S.F. onset(T_s)

No Long Range Ordering Kosterlitz-Thouless transition

C peak (anomaly) at $T_{GL} >> T_{KT}$

$\Box \omega/2\pi$ - & L-Dependences of Superfluidity in Low-D

$\rho_s^{(observed)}$ <u>Superfluidity in 2D</u> • $\omega/2\pi$ Dependence $\omega \rightarrow 10^8 \text{Hz}$ M. Hieda, et.al., **ω**≈10³Hz J. Phys. Soc. Jpn. 78 (2009) 033604 $\overline{T}_{\text{Onset}}$ T_{KT} $T_{\rm p}$ Size L Dependence **Dynamic KT Theory** ρ_{S} (observed at ω) = $K(r_{D,\omega})$ Stiffness Constant $14D/\omega$ $r_{D,\omega}$ Diffusion D: Vortex Diffusion constant G (Umal/m) Length Superfluidity depends on Superfluidity depends on [2D Size L] against [Diffusion Length $r_{D,\omega}$] $\delta_{\delta_{\gamma}}^{\circ}$ 0.55 0.60

0.65 $T_{(K)}$

100

10

0.70

 $^{\omega/2\pi_{(MH_{Z})}}$

"Quasi"-Conditions for 1D Nanotubes and Magnets

\Box First Layer at n_1 and Uniform Layer up to n_f

□ Heat Capacity Isotherms of ⁴He and ³He

□ Phonon velocity v_c & v_P and 1D Phonon Condition

Phonon Heat Capacity of Nanotube

1D phonon heat capacity of nanotube

Observed Superfluid of ⁴He in 1D Nanotubes

H. Ikegami, Y. Yamato, T. Okuno, J. Taniguchi, N. Wada, S. Inagaki and Y. Fukushima, Phys. Rev. B 76, 144503 (2007)

Pore Diameter *d* **Dependence of Superfluidity**

Superfluid density($\infty \Delta F$)

From H. Ikegami, et al, PR**B 76** (2007) 144503 Y. Minato, to be submitted.

Superfluidity above d = 1.8nm

Critical change of superfluidity at d = 2.2-2.8nm

□ Superfluidity Observed for ⁴He in 1D Nanopores

- Superfluid was observed in 1D phonon state above $d \ge 1.8$ nm
- ▶ ρ_{s} T depends on d.

2D and 1D Correlation Functions by T. Phonon

<u>2D</u> <u>Correlation function</u> $T < T_{KT}$: Thermal phonon fluctuation

$$\left\langle \psi^*(r)\psi(0)\right\rangle \approx (1/r)^{\eta}$$

 $\eta = \frac{T}{2\pi K_0}$

S. F. is observed by Torsional Oscillator

 $T > T_{\text{KT}}: \text{S.F. vortex fluctuation}$ $\left\langle \psi^{*}(\mathbf{r})\psi(0) \right\rangle \approx \mathbf{r}^{-1/2} \exp\left[-\mathbf{r}/\xi_{+}(\mathbf{T})\right]$ $\xi_{+}(\mathbf{T}) \propto \exp\left[\frac{1}{b\sqrt{\mathbf{T}-\mathbf{T}_{\text{KT}}}}\right]$ S. F. above T_{KT} is observed when $\xi_{+}(T) \geq r_{D,\omega} = \sqrt{14D/\omega}$

1D Correlation function

Thermal phonon fluctuation

$$\langle \psi^*(r)\psi(0)\rangle \approx \exp\left[-r/\xi_+(T)\right]$$

 $\xi_+(T) \propto 1/T^\eta$

Normal fluid state at finite temperatures

S. F. can be observed when $\xi_+(T) \ge [1D \text{ length}]$

Pore Diameter *d* **Dependence of Superfluidity**

K. Yamashita and D. S. Hirashima, PRB 79(2009)014501

Summary

- ▶ 1D phonon state of ⁴He fluid nanotubes was realized.
- Superfluidity in 1D state was observed for 1D pores above 1.8nm.
 - ρ_{s} T depends on **d** and coverage **n** (d = 2.4nm).

• Possible reason of Superfluidity in 1D state.

• 1D correlation length exceeds the length of ⁴He-fluid-nanotube at low temperatures.