STM/STS study of surface electronic density of states of Sr₂RuO₄ & Unconventional local transport characteristics in microfabricated Sr₂RuO₄-Ru eutectic crystals

AIST

Tokyo Univ. of Sci. Hokkaido Univ. Nagoya Univ. Kyoło Univ. Univ. Tokyo

<u>Hiroshi Kambara</u>

Satoshi Kashiwaya Hiroshi Yaguchi Yasuhiro Asano Yukio Tanaka Yoshiteru Maeno Hiroshi Fukuyama

$\frac{\text{Introduction}}{\text{Sr}_{2}\text{RuO}_{4}} (T_{c} = 1.5 \text{ K})$

Chiral p-wave superconductor (spin-triplet pairing)

Rich internal degrees of freedom in the Cooper pair !

Novel phenomena are predicted theoretically: half quantum vortex, anomalous proximity effect, etc. challenging

cubiocto

<u>Outline</u>

What are the local electronic states and properties?

1. STM/STS study of local density of states

Surface sensitive

A cleaved surface (SrO-layer) does not show superconductivity.

STM image (5 nm × 5 nm) Sr_2RuO_4

2. Local transport characteristics of microfabricated crystals

Surface insensitiveLocal caracteristics
extracted from bulkAnomalous hysteretic
feature in V-I
characteristics suggests the
existence of chiral domain $p_x+ip_y p_x-ip_y$

1. STM/STS study of surface electronic density of states

STM and Tunnel spectra on a cleaved surface

STM and Tunnel spectra on a cleaved surface

Cleaving-temperature dependence of Sr₂RuO₄

Solid State Commun. 30, 115 (1979).

Non-superconducting surface of Sr₂RuO₄

Surface-sensitive measurement is not straightforward to study the superconductivity of Sr_2RuO_4 .

2. Unconventional local transport characteristics in microfabricated Sr_2RuO_4 -Ru eutectic crystals

<u>Sr₂RuO₄-Ru eutectic system ~3-K phase superconductivity~</u>

p-wave superconducting junctions are naturally formed.

Sample configurations (I / / ab and I / / c)

V-I & dV/dI-I characteristics (Anomalous hysteresis)

Anomalous hystereses are observed for both I//ab and I//c directions.

How are V-I characteristics anomalous?

NOT usual JJs!

cf) $H_{c1}(0) \cong 70 \text{ G}$ (1.5-K phase) Deguchi, Mao, Maeno, JPSJ(2004).

Possible origin of the anomalous hysteresis

Chiral domain wall motion through the 3-K phase (K_x) and 1.5-K phase $(K_x \pm iK_y)$ coexistence region

<u>Summary</u>

STM/STS at Sr₂RuO₄ surface

 Low temperature (T<100 K) cleaved surface (Sr0-layer) shows non-superconducting gap. Room temperature cleaved surface shows disordered electronic states. The surface electronic states are different from those of bulk superconductivity.

Local transport measurement for microfabrication sample

 Microfabrication technique with FIB was applied to Sr₂RuO₄-Ru eutectic crystals. Local superconducting channels were successfully extracted.

 Anomalous hysteresis of V-I characteristics was observed for both I//ab and I//c directions. It suggests that internal degrees of freedom of the chiral p-wave state. Chiral domain wall motion by DC current is a possible origin of the anomalous hysteresis.