Novel Quantum Phenomena in Superconducting Sr₂RuO₄

Interference between s-wave superconductor and Sr₂RuO₄

Y. Maeno, R. Nakagawa, T. Nakamura,

T. Yamagishi, S. Yonezawa, T. Terashima

Kyoto University

The "Superclean" Project (FY2005-2009)

A04: Anisotropic Superconductors and Superfluids

 Sr_2RuO_4 (1.5 K) Sr_2RuO_4 -Ru (3 K)

³He-A-like

³He-A, B

A04g: Maeno (Kyoto) A04h: Ishikawa (Osaka City)

Posters on Ruthenate SupeC

P121 Kittaka: T_c of pure Sr_2RuO_4 can be as high as 3.2 K ! P123 Nakagawa: Pb/Ru/Sr_2RuO_4 proximity junctions

P 116 Karaki, P118 Tenya: Magnetization curves
P119 Ishida: NMR review
P139 Kashiwaya: Microdevices
P117 Nomura, P120 H.Ikeda, P124 Yanase:

d-vector orientation (theories)

P138 Sakaki: *E*-induced M-I transition in Ca₂RuO₄

Novel Quantum Phenomena in Superconducting Sr₂RuO₄

Interference between s-wave superconductor and Sr₂RuO₄

Y. Maeno, R. Nakagawa, T. Nakamura,

T. Yamagishi, S. Yonezawa, T. Terashima

Kyoto University

Pairing Symmetry of Sr₂RuO₄

 $\boldsymbol{d} = \boldsymbol{Z} \Delta_0(\boldsymbol{k}_x + i\boldsymbol{k}_y)$

A.P. Mackenzie and Y. Maeno, Rev. Mod. Phys. **75**, 657 (2003).

Spins: S = 1, $S_z = 0 \rightarrow ?$

Spin

- NMR Knight shifts
- Polarized neutrons
- → Spin Triplet Pairing

Orbital moment: L = 1, $L_z = 1$

Orbital

Broken T

- μ SR Vortex lattice
- Kerr effect
- Broken Time Reversal Symmetry
- Josephson effect ·chiral domains
 Odd Parity (p-wave)

Spin Orientation (*d*-vector) in Sr₂RuO₄

Both spin states are compatible with NMR experiments.

Murakawa, Ishida *et al.*

Half-quantum vortex (HQV) is possible, with the rotation of the *d*-vector (spin) by π , and the <u>orbital phase winding of π .</u> HQV *d*//x is preferred energetically.

S.B. Chung, Bluhm, Kim, PRL **99**, 197002 (2007).

Vakaryuk, Leggett, PRL 103, 057003 (2009).

Chiral *p*-wave state of Sr₂RuO₄

Nucleation of Vortex State in Ru-inclusion in Eutectic Ruthenium Oxide Sr₂RuO₄-Ru

H. Kaneyasu and M. Sigrist, arXiv: 1002.4793v2.

 $T_{\rm c} \,({\rm Sr_2 RuO_4}) = 1.5 \,{\rm K}$ $T_{\rm c} \,({\rm Ru}) = 0.49 \,{\rm K}$

At lower *T*, a vortex should be induced in Ru.

Anomalous $I_c - T$ of Pb/Sr₂RuO₄/Pb junction

Proximity effect in Pb/Sr₂RuO₄/Pb junction

changes from 0 to π .

Important roles of Ru

In Jin's experiments, the crystals were not *pure* Sr_2RuO_4 c but Sr_2RuO_4 -Ru <u>eutectic crystal</u>. 共晶

Low contact resistance between Pb and Ru allows the penetration of *s*-wave SC (Pb) into Ru, and then into Sr_2RuO_4

A complication: the 3-K superconductivity.

3-K phase superconductivity

Sr₂RuO₄-Ru eutectic system (3-K phase)

Interference well-reproduced in micro-fabricated junctions

Two *I*_c's: Only one Pb is sufficient *!*

Pb/Ru/Sr₂RuO₄ junction

Measurement

Pb/Ru/Sr₂RuO₄ junction

Sr₂RuO₄ and the 3-K phase

- 1. $Pb/Ru/Sr_2RuO_4$ proximity junctions reveal the interference between s-SC and Sr_2RuO_4 .
- 2. The unusual $I_c(T)$ is ascribable to the change in the phase windings around Ru.

"Topological quantum phenomenon"

 3. Further tests needed to prove Odd Parity of Sr₂RuO₄:
 Direct observation of induced vortex in Ru.