Surface Andreev Bound States and Surface Majorana States on the Superfluid ³He B Phase

Tokyo Institute of Technology

- R. Nomura
- S. Murakawa, M. Wasai, K. Akiyama, Y. Wada,
- Y. Tamura, M. Saitoh, Y. Aoki and Y. Okuda

Collaboration with

Y. Nagato, M. Yamamoto, S. Higashitani and K. Nagai at Hiroshima Univ.

SABS are intrinsic to surface of anisotropic BCS states.

Zero bias conductance peak in unconventional superconductors

Condition of the formation of mid gap Andreev resonant state(MARS)

Inversion at the plane parallel to the interface

By Yukio Tanaka, superclean (2005)

superfluid phases of 3He

 $|A \text{ phase}\rangle = \Delta_A (p_x + ip_y) \{|\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle\}$

anisotropic gap

$$B phase \rangle = \Delta_B \left\{ \left(p_x + i p_y \right) \downarrow \downarrow \rangle + \left(p_x - i p_y \right) \uparrow \uparrow \rangle + \underline{p_z} \left| \uparrow \downarrow + \downarrow \uparrow \rangle \right\}$$

In the BW state, anti-symmetry of the order parameter is broken.

isotropic gap

Theoretically calculated SDOS in BW state on specular surface

angle resolved

No sharp peak at zero energy but a broad SABS band appears within the bulk energy gap Δ .

"Dirac" cone on 3He-B

$$\theta = 0 \quad \Delta(p_z) = -\Delta(-p_z)$$

$$\bigcup_{E=0}^{I} E = 0$$

$$E = \Delta_{\prime\prime} \sin \theta = c_{\prime\prime} p_{\prime\prime}$$

$$d_{\mu i} = \begin{pmatrix} \Delta_{\parallel} & 0 & 0 \\ 0 & \Delta_{\parallel} & 0 \\ 0 & 0 & \Delta_{\perp} \end{pmatrix}$$

particel = anti-particel

SABS: Majorana Fermion

"Majorana cone"

Chun, Zhan, PRL09

Recent theories on Majorana surface state in 3He-B

(1)Classification of topological insulators and superconductors in three spatial dimensions
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 2008
(2)Topological superfluids with time reversal symmetry
R. Roy, arXiv:0803.2868v1, 19 Mar 2008
(3)Time-Reversal-Invariant Topological Superconductors and Superfluids in Two and Three

(3)Time-Reversal-Invariant Topological Superconductors and Superfluids in Two and Three Dimensions

Xiao-Liang Qi, Taylor L. Hughes, S. Raghu, and Shou-Cheng Zhang, PRL 102, 187001 (2009)

(4) Detecting the Majorana fermion surface state of 3He-B through spin relaxation

S. B. Chung and S. C. Zhang, PRL 103, 235301 (2009)

(5) Fermion zero modes at the boundary of superfluid 3He-B

G.E. Volovik, Pis'ma ZhETF 90, 440-442 (2009)

(6) Topological invariant for superfluid 3He-B and quantum phase transitions

G.E. Volovik, Pis'ma ZhETF

(7) Fermi Surface Topological Invariants for Time Reversal Invariant Superconductors

X. L. Qi, Taylor, L. Hughes and S. C. Zhang, arXiv:0908.3550v1, 25 Aug 2009

(8) Strong Anisotropy in Spin Suceptibility of Superfluid 3He-B Film Caused by Surface Bound States

Y. Nagato, S. Higashitani and K. Nagai, J. Phys. Soc. Jpn., 78, 123603 (2009)

Quasiparticles scattering off a wall

S =0.5

S can be controlled continuously by thin ⁴He layers on a wall.

Theoretically calculated SDOS in BW state at various S

Nagato et al. JLTP 1998

Measurements

Transverse acoustic impedance of AC-cut quartz in liquid ³He $Z = \frac{\prod_{xz}}{\sum} = Z' + iZ''$ \prod_{xz} Stress tensor of liquid on the wall \mathcal{U}_{x} Oscillation velocity \mathcal{U}_{r} $Z' - Z'_{0} = \frac{1}{4} n \pi Z_{q} \left(\frac{1}{Q} - \frac{1}{Q_{0}} \right)$ Superfluid ³He $Z'' - Z''_{0} = \frac{1}{2} n \pi Z_{q} \frac{f - f_{0}}{f_{0}}$ ٤ Wall $Z_q = \rho_q c_q$ Superfluid ³He 0.5mm Transducer

Hydrodynamics region $\omega \tau << 1$, high temperature

critically damped

Collisionless region $\omega \tau >> 1$, low temperature

$$Z = \frac{\prod_{xz}}{u_x} = Z' + iZ''$$

Quasiparticle scattering

Pair breaking

 $\omega \sim \Delta$ Spectroscopy of SDOS

Diffusive limit, S = 0

Pure ³He without ⁴He coating

Z(T) at S = 0

Aoki et al. PRL (2005)

Partially specular wall; 0 < S <1

Coat a wall with ⁴He layers

Cartoon

Evaluate S from Z in normal fluid

fitting at 16 MHz and 17 bar

S vs ⁴He layers and P

S is larder for thicker ⁴He. is smaller at higher P.

Z(T) in B phase S = 0.17, 2.7 layers ⁴He, 10bar

Compared to S = 0, *T** shifts to higher. Smaller temperature dependence Z(T).

$$\Delta^* = \hbar \omega - \Delta (T^*)$$

S dependence of $\Delta^*(T)/\Delta(T)$

Saitoh, et al. PRB(R) 2006 Wada, et al. PRB 2008

Broadening at larger S

Suppression of SDOS at zero-energy at larger S

Nagato et al. JLTP 1998

New low temperature peak at S > 0.

Murakawa et al., PRL 09

Scaled energy dependence of $Z(\omega/\Delta)$ at various S

Low energy peak grows when S > 0 due to the formation of the Majorana cone.

$Z(\omega)$ theory by Nagato et al. for S = 0.5

Two peaks in $Z(\omega)$ due to the formation of Majorana cone.

$Z(\omega)$ theory for S = 0

Flat below Δ^* Single peak in Z(T)

Summary

Surface Andreev bound states in ³He-B are detected by $Z(T, \omega)$ measurement. Specularity S is controlled by ⁴He layers.

On a partially specular wall

Bandwidth of bound states Δ^* becomes broader.

Growth of the low temperature peak in Z(T) as increasing S is due to the formation of the Majorana cone.

Our observation is an experimental indication of the Majorana cone on 3He-B.