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Andreev Bound States (ABS)
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Resonant states 
in normal metal.

SABS are intrinsic to surface of 
anisotropic BCS states.
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Zero bias conductance peak in 
unconventional superconductors
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superfluid phases of 3He
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anisotropic gap

isotropic gap

In the BW state, anti-symmetry of the 
order parameter is broken.



No sharp peak at zero energy but a broad SABS band
appears within the bulk energy gap .

Theoretically calculated SDOS in BW state on specular surface
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“Dirac” cone on 3He-B

angle resolved angle averaged (Natato 1998)
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Chun, Zhan, PRL09

“Majorana cone”

particel = anti-particel

SABS: Majorana Fermion
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Diffusive limit

S = 0

S can be controlled continuously by thin 4He layers on a wall.

Quasiparticles scattering off a wall

Specular limit

S = 1 1 > S > 0

Partially specular

S =0.5



Theoretically calculated SDOS in BW state at various S

Zero energy state is intrinsically suppressed at S > 0.

Flat surface bound states band at S = 0.
Bandwidth (*) is broader at S > 0.

EF Δ

Nagato et al. JLTP 1998
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Measurements
Transverse acoustic impedance of AC-cut quartz in liquid 3He
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Stress tensor of liquid on the wall

Oscillation velocity
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Hydrodynamics region  << 1, high temperature
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critically damped

Equivalent to  viscosity 
measurements
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Collisionless region  >> 1, low temperature

Quasiparticle scattering

Pair breaking
 ~  Spectroscopy of SDOS



Diffusive limit,  S = 0

Pure 3He without 4He coating
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In s-wave BCS superfluid (no SABS)
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Small frequency dependence

Drop in Z’ at Tpb

Pair breaking edge 
temperature Tpb
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P = 10.0 bar

No drop in Z’ at Tpb.

Tpb Tpb
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peak in Z” and kink 
in Z’ at T*

T* T*

No change in Z at Tc

In B phase 

29 MHz 
48 MHz

Structure appears 
below Tpb. 

Low lying 
excitations !!



Z(T) at S = 0

Aoki et al. PRL (2005)

実験
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Z() theory 
with SABS

First experimental confirmation 
of the sub-gap structure. 
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Coat a wall with 4He layers

Partially specular wall; 0 < S <1

Cartoon 

3He

wall

4He



fitting at 16 MHz and 17 bar

Evaluate S from Z in normal fluid
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S vs 4He layers and P

S is larder for thicker 4He.
is smaller at higher P.
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Z(T) in B phase
S = 0.17、

2.7 layers 4He, 10bar

T* shifts to higher.
Smaller temperature 
dependence Z(T).

Compared to S = 0,
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S dependence of *(T)/(T)

Wada, et al. PRB 2008
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Saitoh, et al. PRB(R) 2006



Nagato et al. JLTP 1998
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Broadening at larger S

Suppression of SDOS at zero-energy at larger S
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New low temperature peak at S > 0.
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Scaled energy dependence of Z() at various S

Low energy peak grows when S > 0 due to 
the formation of the Majorana cone.



Z() theory by Nagato et al. for S = 0.5
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T=0.9TC

Two peaks in Z() due to the 
formation of Majorana cone.



Flat below *    
Single peak in 
Z(T)
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Summary
Surface Andreev bound states in 3He-B are detected by 
Z(T, ) measurement.
Specularity S is controlled by 4He layers.

Bandwidth of bound states * becomes broader.
Growth of the low temperature peak in Z(T) as increasing S 
is due to the formation of the Majorana cone.

Our observation is an experimental indication of the 
Majorana cone on 3He-B. 

On a partially specular wall 


