Spin Relaxation and Mechanical Spin Pump in Superfluid ³He-A₁

A. Yamaguchi, S. Murakawa, Y. Aoki, H. Ishimoto H. Kojima

Institute for Solid State Physics, University of Tokyo; Rutgers University; Tokyo Institute of Technology; University of Hyogo

PSM2010, Yokohama, March, 2010

Thanks to

- Experiments at ISSP
 - K. Kimura, S. Kobayashi, K. Suzuki, M. Arai (Former Graduate and Undergraduate Students)
 - R. Masutomi (Former Post Doc at Rutgers Univ.)
- Theoretical Suggestion
 - A.J. Leggett, K. Nagai, T. Takagi, H. Ebisawa
- Financial support
 - "Research project of PSM"

Outline

1.Introduction

- Superfluid A₁ phase; Hydrodynamics in A₁

2.Early Experiment

- Magnetic Fountain Effect, Spin Relaxation;

3.Spin Pump Experiment

- Polarization Enhancement, Spin Relaxation

4.Summary

- Summary, Future Aspect

PSM2010

1. Introduction

Superfluid ³He A₁ phase

- One phase among multiple p-wave superfluid phases of liquid ³He
- It only appears in magnetic field.
- The condensate is believed almost totally spin polarized. (consists of up-spin cooper pairs)
- Characteristic hydrodynamics, such as "Magnetic Fountain Effect"

Magnetic Fountain Effect

Magnetically accelerated superfluid ³He in A₁

PSM2010

2. Early experiment

Motivation

To investigate Magnetic Fountain Effect in homogeneous and large magnetic field

ISSP large 15 T sc magnet and nuclear demagnetization refrigerator

Experimental Cell – Magnetic Fountain Effects

PSM2010

6μm

Mylar sheet

δH

Minority Spin Condensate

PSM2010

Theoretical Prediction

3. Spin pump experiments

Basic Idea

Almost totally spin polarized condensate

+ Force the condensate to pass through the superleak

Superleak = Spin filter

Schematic View

PSM2010

Polarization in a small inner chamber should be increased by pumping action

³He SPIN PUMP

Experimental Cell – Spin pump

Increasing polarization

 $\Delta S / S \sim \Delta V / V$ If no spin relaxation Volume of inner chamber: V=0.016 cm³ determined by parasitic volume Diaphragm motion: 1.6 μm at 200 Vdc

PSM2010

Result in A₂ phase, no spin pressure PSM2010 28 bar, 5T, A₂ phase

Applied force, F Response, displacement

Result in A₁ phase

PSM2010

28 bar, 5T, A₁ phase

Proportional to increase of polarization difference In inner chamber

Polarization

Calculated from difference between data and force

$$k\Delta d = F(t) + A \times P_{diff}(t)$$
$$P_{diff}(t) = \rho v(-\frac{\gamma}{\chi} \Delta S(t))$$

Initial polarization of liquid ³He = 2.2 % at 5Tesla,

Maximum increased polarization 0.8 %

~Increase by 40% from initial polarization

Spin relaxation times at different polarization

Increase by 40% corresponds to 2T

Assuming temperature change negligible

Spin relaxation time should vary as function of polarization

B-dependence of relaxation time in MFE experiments

Spin relaxation times at different polarization

13T

12T

9T

8T 6T 5T

3.5T 2T

1.9

2

Consistent with Bdependence of relaxation times

2.5

2.4

2.3 T [mK]

2.2

2.1

2.6

Summary

- Spin Relaxation in ³He A1 phase
 - In homogeneous and large magnetic fields
 - Temperature dependent spin relaxation rate
 - Comparison with M.S.C theory
- Spin pump experiment
 - Polarization was increased by 40 %, estimated from spin pressure.
 - Polarization dependence of Spin relaxation rate
- Alternative method for spin polarized ³He experiment in "mK" temperature range
- Future Aspects
 - What happens in larger polarized 3He?
 Spin relaxation?, Stability of superfluid phase?