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Metal is simple (if free)

Are insulators boring ??
Metal is useful. copper, silver, gold: good conductors

unstable against for perturbation (without some protection or fine tuning)

Spin analogue (Gapless spin liquid) is tricky.

Lots of applications

“high energy” effective theory ?
Anomalous metals, etc Critical : RGwith interaction: complicated
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Lots of applications

“high energy” effective theory ?
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Are insulators boring ??
Insulators : Non metal, gapped 

Band insulators
Superconductors
Integer & Fractional Quantum Hall States
Integer spin chains (Haldane)
Dimer Models (Shastry-Sutherland)
Valence bond solid (VBS) states
Half filled Kondo Lattice       
Spin Hall insulators

Absence of low energy excitations
Energy gap above the ground state

Lots of variety
Absence of fundamental symmetry breaking (mostly)

No responses against for small perturbation

No Response against small perturbation

Gapped: Nothing in the gap : cf. Nambu-Goldstone boson
No low lying excitations 

??
？？？

gapless modes:
acoustic phonons

zero sounds
spin waves
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Local quantum object 
to characterize spin liquid

|Singlet Pair12� =
1√
2
(| ↑1↓2� − | ↓1↑2�)

|G� =
�

J=Dimer Covering

cJ ⊗ij |Singlet Pairij�

Local Singlet Pairs :
    (Basic Objects)

Singlet : quantum order parameter

Anderson

DO NOT NEED ANY symmetry breaking
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Order formation

Symmetry breaking & Long range order
Landu-Ginzburg-Wilson scenario

 local order parameter
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LGW to Quantum Scenario

Symmetry breaking & Long range order
Landu-Ginzburg-Wilson scenario

 local order parameter

Quantum Objects to construct the state
Quantum Order parameter

Do not need symmetry breaking
Use of Quantum interference

Singlet

Quantum/Spin liquids: Collection of
weakly coupled quantum local objects

Shastry-Sutherland ’81

Topological quantities for 
quantum order parameters of

quantum objects
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“Classical” Observables
Charge density, Spin density,...

“Quantum” Observables !
Quantum Interferences:

Aharonov-Bohm Effects
Berry phases

Classical to Quantum (for characterization)

Use  Quantum observables for the characterization

:Berry Connection

:Berry Phase           

�O�G = �G|O|G� = �G�
|O|G�

� = �O�G�

|G�
� = |G�eiφ

O = n↑ ± n↓, · · ·

�G|G + dG� = 1 + �G|dG�
A = �G|dG�

iγ =
�

A

|Gi� = |G�
i�eiφi

�G1|G2� = �G�
1|G�

2�ei(φ1−φ2)

Unitary invariant

depend on the phase of the state

charge, spin, ...
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Berry phase

Aψ = �ψ|dψ� = �ψ| d
dxψ�dx.

|ψ(x)� = |ψ�(x)�eiΩ(x)

Aψ = A�
ψ + idΩ = A�

ψ + i
dΩ
dx

dx

(Abelian)

iγC(Aψ) =
�

C
Aψ

Gauge Transformation

Eigenvectors ( space )  
with Parameters

Information between nearby states
Berry connection :

gauge potentialGeometrical quantities
: Berry phase

Fiber Bundle
H(x) and H(y) are independent

γC(Aψ) = γC(Aψ�) +
�

C
dΩ

γC(Aψ) ≡ γC(Aψ�) mod 2π

2π × (integer) if eiΩ is single valued

only well-defined in mod 2π
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Anti-Unitary Symmetry 

Invariant State   

ex. Unique Eigen State

To be compatible with the ambiguity, 
  the Berry Phases have to be quantized as

Anti-Unitary Invariant State and
 Z2 Berry Phase

[H(x),Θ] = 0

∃ϕ, |ΨΘ� = Θ|Ψ� = |Ψ�eiϕ

� |Ψ� Gauge Equivalent
(Different Gauge)

γC(AΨ) = −γC(AΘΨ) ≡ −γC(AΨ), mod2π

γC(AΨ) =
�

0
π

mod2π

Z2 Berry phase

Θ2
N = 1
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Invariant State   
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To be compatible with the ambiguity, 
  the Berry Phases have to be quantized as

Anti-Unitary Invariant State and
 Z2 Berry Phase

[H(x),Θ] = 0

∃ϕ, |ΨΘ� = Θ|Ψ� = |Ψ�eiϕ

� |Ψ� Gauge Equivalent
(Different Gauge)

γC(AΨ) = −γC(AΘΨ) ≡ −γC(AΨ), mod2π

γC(AΨ) =
�

0
π

mod2π

Z2 Berry phase

Θ2
N = 1

Also quaternionic 
generalization with 
Kramers degeneracy 

YH ’09
γ3 = − 1

8π2

�

S3

ω3

Θ2
N = −1

i2 = j2 = k2 = ijk = −1

ω3 = Tr (AdA+
2

3
A3)
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How to characterize the local quantum object 

 Local gauge transformation

Local quantum object

Berry phases

x

y

z

Si Sj

Local singlet
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θ
Si S�

j
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j =

1
2
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How to characterize the local quantum object 

 Local gauge transformation

Local quantum object

Berry phases

x

y
z

θ
Si S�

j

Si · Sj → Si · S�
j =

1
2
(e−iθSi+Sj− + e+iθSi−Sj+) + SizSjz

|ψ(θ)� = U(θ)|ψ(0)�
U(θ) = ei(S−Sz)θ

A = �ψ|dψ� = Sdθ

γ = 2πS = π

S = 1/2

Local singlet

iγ =
�

dA =
�

�ψ|dψ�
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Local object in a many spin system

Gauge transformation Sj → Sj
�
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Local object in a many spin system

Gauge transformation Sj → Sj
�

If the fundamental quantum object is a link,
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Local object in a many spin system

Gauge transformation Sj → Sj
�

If the fundamental quantum object is a link,

modify the exchange only at the link 

                               to define the Berry phase

PSM2010, Yokohama,  March 10, 2010



Topological Classification of Gapped Spin Chains
✦ S=1,2 dimerized Heisenberg model

J1 = cos θ, J2 = sin θ

2

the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)〉 of H(φ) as
A(φ) = 〈GS(φ)|∂φ|GS(φ)〉. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
undefined if the gap between the ground state and the
excited states vanishes while varying the parameter φ.
We use a local spin twist on a link as a generic param-
eter in the definition of the Berry phase [1]. Under this
local spin twist, the following term S+

i S−
j + S−

i S+
j in

the Hamiltonian is replaced with eiφS+
i S−

j + e−iφS−
i S+

j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = 〈GS(φn)|GS(φn+1)〉
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during

 0  0.5  1  1.5  2

(b)

(c)

(4,0) (3,1) (2,2) (1,3) (0,4)

(a)
(2,0) (1,1) (0,2)

FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
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an N = 10 system with S = 2, the phase boundaries are
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functions rather than the energy diagram.
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Figure. 1(c) shows the Berry phase of the local link in
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parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
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S = 2 N = 10S = 1 N = 14

Z2Berry phase

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431’08

: dimerization strength : dimerization strength

Topological Quantum Phase Transitions with translation invariance

recursive transitions 
with dimerization
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BEC-BCS crossover 
as a local quantum phase transition

spin up electrons
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spin down electrons

M. Arikawa, I. Maruyama and Y. Hatsugai, arXiv:1003.4735



BEC-BCS crossover 
as a local quantum phase transition

spin up electrons
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Switching on attractive interaction among particles

spin down electrons

M. Arikawa, I. Maruyama and Y. Hatsugai, arXiv:1003.4735
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Making bosons in real space 
then condense

BEC : strong coupling



BEC-BCS crossover 
as a local quantum phase transition

PSM2010, Yokohama,  March 10, 2010

Making bosons in real space 
then condense

Cooper pairing 
in momentum space 

BEC : strong coupling BCS : weak coupling

Crossover
adiabatically connected



strong coupling (BEC)weak coupling (BCS)

s-wave Gap

BCS Model at half filling
H = −t

�

σ,i,j

c
†
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Summary

Quantum/Spin liquid as a zoo of insulators
Berry phase as a quantum interference 
                                  for the characterization

March 10, 2010

Singlets & BEC-BCS crossover


