

EXOTIC PHASES OF FRUSTRATED SYSTEMS

Hirokazu Tsunetsugu (ISSP, Univ. of Tokyo)

(collab.) Takuma Ohashi (Osaka Univ.) Norio Kawakami (Kyoto Univ.) Tsutomu Momoi (RIKEN) Mike E. Zhitomirsky (CEA, Grenoble)

> Hamagin Hall "VIA MARE", Yokohama, Mar.9-12, 2010

Mar. 10, 2010

Superclean materials/systems

- □ Superclean materials/systems provide a chance of novel exotic phases otherwise masked by disorders
- \Box Frustrated systems are a good play ground where various exotic quantum phases are realized
- \Box Examples of novel exotic phases include (1) spin liquid, also paramagnetic insulating phase (2) hidden order (multipole orders …)
- Superclean materials/systems are a good starting point to investigate impurity effects
	- -- impurities are interesting, because their effects provide information on bulk properties

Main Achievements in PSM Project

- \Box Mott metal-insulator transition and exotic 1D spin correlation in Kagome Hubbard model [Ohashi, Kawakami, and Tsunetsugu, PRL 97, 066401 (2006)]
- Reentrant metal-insulator transition in the Hubbard model on anisotropic triangular lattice [Ohashi, Momoi, Tsunetsugu, and Kawakami, PRL 100, 076402 (2008)]
- \Box Dislocations and vortices in Pair-Density-Wave superconductors [Agterberg and Tsunetsugu, Nature Phys. 4, 639 (2008)]
- \Box Spin nematic order in S=1 bilinear-biquadratic model [Tsunetsugu and Arikawa, J. Phys. Soc. Jpn. 75, 083701 (2006)]
- Magnon-pair condensation and spin nematic state in frustrated spin system including ferromagnetic exchanges [Tsunetsugu and Zhitomirsky, in preparation]
- **Impurity effects in spin nematic state** [Takano and Tsunetsugu, in preparation]

Mott Transition in Anisotropic Triangular-Lattice Hubbard Model

•Phase Boundary Topology •Heavy Quasiparticles

[Ohashi, Momoi, Tsunetsugu, and Kawakami, PRL **100**, 076402 (2008)]

Mott transition in κ-type organic materials

The shape of metal-insulator transition line is quite different between strongly frustrated system and less frustrated systems.

U-T Phase Diagram (cluster dynamical mean-field theory)

large U/t

Mott transition – single site DMFT picture

local electron spectral function - Im G

 $U/D=1$ 0 Mott transition is driven by $U/D=2$ transfer of spectral weight between .
ImC high-energy Mott band and low-energy quasiparticle band $U/D=2.5$ 0 $\mathbf{2}$ $U/D=3$ $U/D=4$ larger U/D -2 $\mathbf 0$ $\overline{2}$ -4 ω D

[Zhang, Rosenberg, and Kotliar, PRL, 1993]

Electron Spectral Function *A_k*(ω): reentrant behavior

 quasiparticle peak splits different from high-T insulating phase

• sharp quasiparticle peaks appear inside the Mott gap

Magnetic order

Magnon-pair BEC and spin-nematic state

•frustrated quantum spin system including ferromagnetic exchange interactions \cdot quasi-1D material LiCuVO₄ (S=1/2)

[Tsunetsugu and Zhitomirsky, in preparation]

Possibility of Spin Nematic Order

• Hidden non-"magnetic" order? spontaneous sym. breaking of spin rotation symmetry spin inversion and time reversal sym. are NOT broken

Blume, Chen&Levy...

LiCuVO₄

quasi-1D frustrated magnet $LiCuVO₄$ in strong magnetic field

 $|\mathbf{H}| < H_{c1}$ helical state at low temperatures

 H_{c1} < $|H|$ < H_{c2} NO magnetic LRO, mysterious state

- \Box spin nematic phase?: $\langle S_i^a S_j^b + S_i^b S_i^a \rangle - (1/2) \delta_{ab} \langle S_i^{\perp} \cdot S_i^{\perp} \rangle$
- \Box take into account interchain couplings (2D / 3D)

2005)

Energetics near saturation field

magnons: \downarrow spins in the \uparrow spin background \rightarrow bosons spin nematic order parameter $\mathcal{Q}_{ab} \Leftrightarrow \langle S^-S^- \rangle \Leftrightarrow \langle a^\dagger a^\dagger \rangle$ magnon-pair BEC $~\sim$ BCS (but bosonic, spinless) Energy 2-magnon (cf. Momoi et al for 1D case)1-magnon $E=0$ $H_{\rm c}$ H_{s1} H_{s2} Field H_{s1} =46.5 [T] H_{s2} =47.1 [T] \hat{f} \hat{f} \hat{f} spin-nematic spin-cone for LiCuVO₄

Quasiparticle excitations

$$
\varepsilon_{\mathbf{K}/2+\mathbf{q}} = \omega_{\mathbf{q}} - \sum_{\mathbf{r}} J(\mathbf{r})(\frac{1}{2} - n - n_{\mathbf{r}}) \sin \frac{1}{2} \mathbf{K} \mathbf{r} \sin \mathbf{q} \mathbf{r},
$$

$$
\omega_{\mathbf{q}} = \sqrt{A_{\mathbf{q}}^2 - B_{\mathbf{q}}^2}, \quad B_{\mathbf{q}} = \sum_{\mathbf{r}} J(\mathbf{r}) \Delta_{\mathbf{r}} \cos \mathbf{q} \mathbf{r},
$$

$$
A_{\mathbf{q}} = H - \sum_{\mathbf{r}} J(\mathbf{r})(\frac{1}{2} - n - n_{\mathbf{r}})(1 - \cos \frac{1}{2} \mathbf{K} \mathbf{r} \cos \mathbf{q} \mathbf{r}),
$$

quasiparticle energy

+ gapless Goldstone mode (collective)

H-dependence

(completely polarized phase) global shift of dispersion

(spin nematic phase) gap essentially unchanged ~ 0.07 [meV] w/ deformation of dispersion

⇒possible to check by experiments (eg, inelastic neutron scattering)

Another method of detecting spin nematic order

 \Box indirect detection via coupling to magnetic dipole

eg: nematic order parameter *Q*µν(k)≠0

- \rightarrow coupling $F=\alpha$ *H*_u(k=0) *M*_v(-k) $Q_{uv}(k)$
- \rightarrow induced transv. field $H_v(k) = \alpha H_u(k=0) Q_{uv}(k)$

Apply H_{u} and check if one can detect M_{v} (-k)

(1) Half-filled Hubbard model on anisotropic triangular lattice (t-t'-U) •reentrant metal-insulator transition/crossover is reproduced by cluster DMFT calculation

- •high-T M-I crossover driven by large entropy in frustrated insulating phase •low-T M-I transition -- driven by spin fluctuations
- •intermediate metallic phase heavy quasiparticles inside Mott gap

(2) Spin nematic state in $S=1/2$ spin system in magnetic field •magnon-pair BEC in frustrated spin system including ferromagnetic couplings near saturation magnetic field

- •coherent state and correlation functions
- •quasiparticle excitations finite energy gap and H-dependence •methods of detecting spin nematic order