Phase Diagram of the Triangular *t*-*J*-*K* Model in the Doped-Mott Region:

Effects of Ring Exchange Interactions and the "Spin-Charge Separation"

> Masao Ogata (Univ. of Tokyo) Yuki Fuseya (Osaka Univ.)

J. Phys. Soc. Japan 78, 013601 (2009)

³He adsorbed on graphite

- monolayer ³He \rightarrow
- ³He, ⁴He, HD/HD \rightarrow
 - graphite \rightarrow

- Purely two-dimensional Super Clean

Double-peaked heat capacity

³He/⁴He/gr, [Matsumoto, et al. (2007)]

Spin-Charge separation in 1-dim

In 2-dim ---- movement of a hole leaves trace of Unfovored spin states spin - charge binding Fermi Liquid

t-*J* model as a model for 3 He

A model of monolayer ³He in the doped case

Large *U* Hubbard model = t-J model

in a triangular lattice ----- Frustration

$$H = -t \sum_{i,j,\sigma} \left(\tilde{c}_{i\sigma}^{\dagger} \tilde{c}_{j\sigma} + \text{H.c.} \right) + J \sum_{i,j} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} n_{i} n_{j} \right)$$

However, no spin-charge separation was observed in the triangular *t-J* model. (Koretsune-Ogata, PRL 89, 116401 (2002))

Multiple Spin Exchange

MSE is relevant in a hard-core quantum solid

--- Thouless (1965)

 $H = \sum (-1)^{n} J_{n} \left(P_{n} + P_{n}^{-1} \right)$ n

[Bernu et al. (1992)]

t-J-K model

As a minimum model of monolayer ³He, we use

t-J-K model

Cluster

Half filling (n=1.0)

Doped region (n=0.9)

n = 0.9

K

Excitation energy

S(q) and N(q) are consistent with Fermi surface

Excitation energy

Spin-Charge separation in 1-dim

Similar situation can be considered in the *t-J-K* model !

4-site cluster

K-dominant case $|\uparrow\uparrow\uparrow\downarrow-\uparrow\uparrow\downarrow\uparrow+\uparrow\downarrow\uparrow\uparrow-\downarrow\uparrow\uparrow\uparrow\rangle$ J-2K

u3d1 state

Hole-doped plaquette

K-dominant case $|\uparrow\uparrow\uparrow\downarrow-\uparrow\uparrow\downarrow\uparrow\uparrow+\uparrow\downarrow\uparrow\uparrow-\downarrow\uparrow\uparrow\uparrow\rangle$ J-2K

Hole doping

No trace of spin ______ spin-charge separation as in 1-dim : new state

Spin-Charge separation in 1-dim

Similar situation in the *t-J-K* model

Summary

