Novel Quantum Phases in 2D ³He on Graphite

Hiroshi Fukuyama, Dept. of Phys., The Univ. of Tokyo

Masashi Morishita → P33

Masao Ogata → next talk

Current collaborators:

Daisuke Sato→ P31 Sachiko Nakamura→ P35 Kouta Matsui Tomohiro Matsui

Previous collaborators:

Yosuke **Matsumoto** (ISSP Univ. of Tokyo) Satoshi **Murakawa** (Keio Univ.) Hiroshi **Kambara** (AIST) Shintaro **Takayoshi** (ISSP Univ. of Tokyo)

Rich phase diagram of 3D ³He

How rich is the phase diagram of 2D ³He compared to 3D ?

expectation

Larger frustration

- exotic ground-state?
 (2D superfluid phase, spin liquid, ...)
- quantum criticality?

concern

Substrate effects

- irregularity?
- finite size effects?
- quasi two-dimensionality?

Previously known phase diagram of 2nd layer ³He on graphite

Phase diagram of 2D ³He (2nd layer) at higher densities

Gapless spin-liquid behavior in 4/7 phase

- Absence of finite-*T* phase transitions ... truly 2D down to $T/J \approx 10^{-2}-10^{-3}$ (J = 1-10 mK)
- Double peak in C(T) ... highly frustrated
- No exponential behaviour at T << J ... gapless excitation

Excess heat capacities in Region III ($1 \le n \le 1.2$)

Excess heat capacities:

$$C_{\rm ex} \equiv C(\rho) - C(\rho_{4/7})$$

3rd-layer Fermi Liquid + ferromagnetic background

Degenerate Fermi-liquid puddles in the 3rd layer

Puddle formation at layer higher than 3rd layer

Reduced critical temperature (T_c^*) of rare gases in 3D and 2D

Less confinement to the 2D plane in 3rd layer allows the gas-liquid transition.

Excess magnetization in Region III ($1 \le n \le 1.2$)

Previous cw-NMR data show drops of excess magnetization below 0.3 mK.

However,

new pulsed-NMR data show no anomalies.

Heat capacities in Region IV ($8 \le \rho \le 10 \text{ nm}^2$)

Simple **two-phase coexistence** between 4/7 phase and IC phase

Frustration-tunable 2D ferromagnet

Hole doping into 4/7 phase (Region-II)

Heat capacities in Region-II

Three distinct energy-scales over three orders of magnitude

MT-anomalies of heat capacity in Region-II

2D hole (ZPV) band picture for Region-II

Magnetization of Region-II

All $\Delta M(\rho, T)$ have the same *T*-dependence.

phase separation?! •••• contradicts heat capacity data

Wilson ratio in Region-II

Future experiments

High-T HC measurements

- 30 mK $\leq T \leq 2$ K
- ZYX graphite (10 time larger platelet size than Grafoil)

25 Dull Peak previous HC data Heat capacity (mJ/K) 20 15 10 5 0 2.0 3.0 0.0 1.0 Temperature (K) 0

LEED measurements

- *T* ≥ 100 (300) mK
- I < 1 pA
- micro channel plates (MCP) \times 2
- delay-line detector (DLD)

Summary

- 1. We found puddle formation in 3rd layer
 - The newly added particles are promoted into 3rd layer forming FL puddles.
- 2. We found simple two-phase coexistence between the 4/7 phase and the high density IC solid in the 2nd layer.
- 3. Density dependences of the MSE parameters in ³He /⁴He/gr look similar to those in ³He /³He/gr.
- 4. We found a curious density dependence of HC in "hole doped" region.
 - possible ZPV phase? spin-mass separation? or two-phase coexistence?
 - T_2 data support single phase (ZPV phase) at least at high- $T (\ge 20 \text{ mK})$.