Spin-charge interplay in frustrated itinerant systems

Yukitoshi Motome

PSM2010

INTERNATIONAL SYMPOSIUM ON PHYSICS OF NEW QUANTUM PHASES IN SUPERCLEAN MATERIALS MARCH 9-12, 2010 YOKOHAMA, JAPAN

Chirality-driven mass enhancement in the kagome Hubbard model (M. Udagawa and YM, Phys. Rev. Lett. **104**, 106409 (2010); *Fig.1 in Abstract*)

- Phase competition in the pyrochlore double-exchange model (YM and N. Furukawa, Phys. Rev. Lett. **104**, 106407 (2010); *Fig.2 in Abstract*)
- Partial Kondo screening in frustrated Kondo models [P15 K. Nakamikawa] (K. Nakamikawa, Y. Yamaji, M. Udagawa, and YM, in preparation)
- Non-coplanar order and anomalous Hall effect in the triangular-lattice double-exchange model (Y. Akagi and YM, in preparation)

... and more !

[P16 H. Ishizuka; P17 J. Yoshitake; P22 M. Udagawa; P43 T. Misawa]

Chirality-driven mass enhancement in the kagome Hubbard model

Masafumi Udagawa and Yukitoshi Motome

- 🗳 Introduction
 - heavy d electrons: Kondo or correlation + frustration?
- Model and Method
- 🖗 Results
 - energy hierarchy among charge, spin, and chirality
 - heavy-mass behavior due to the degeneracy associated with chirality
- 🖗 Summary

Heavy mass: Conventional Kondo physics

heavy-fermion *f*-electron systems: hybrid of <u>conduction electrons</u> and <u>localized moments</u>

Iarge mass renormalization due to screening of localized spins by conduction electrons at Kondo temperature T~T_K

- \rightarrow release of the spin entropy below $T_{\rm K}$
- specific-heat coefficient: $\gamma \sim \log 2/T_{\rm K}$

✓ localized moments = entropy reservoir

τ² [κ²]

P. Schlottmann, 1989

Heavy mass in transition metal oxides: Unconventional mass enhancement?

several examples of heavy *d* electrons LiV₂O₄, (Y_{1-x}Sc_x)Mn₂, β-Mn, ...

 \blacksquare typical: spinel oxide LiV₂O₄

frustrated pyrochlore lattice of V

on clear sign of phase transition

characteristic temperature T*~20-30K:
 heavy mass behavior at lower T

controversial on the mechanism of heavy mass behavior: no obvious entropy reservoir

Kondo ? V. I. Anisimov *et al.*, 1999

electron correlation + frustration ?

V. Eyert et al., 1999; H. Tsunetsugu, 2002; Y. Yamashita and K. Ueda, 2003, etc.

Electron correlation + Frustration: A "folklore"

Mott criticality (Brinkman-Rice, Gutzwiller, dynamical mean-field, ...)

✓ critical mass enhancement in the paramagnetic solution

- ✓ local spin fluctuation under strong correlation = entropy reservoir
- ✓ Usually, all of these are masked by the symmetry breaking

"Folklore": Frustration suppresses the symmetry breaking and rejuvenates the mass enhancement hidden in the 'bare' paramagnetic state.

Caveat...

Even in the paramagnetic solution, the quasi-particle peak is fragile against spatial correlations.

On the other hand, in the frustrated case...

What is the 'true' role of frustration?

Objectives

to clarify the role of frustration in correlated metals

- secondary role, just to suppress the spatial correlations ?
 - \blacksquare If yes, mass enhancement occurs in the energy scale of spin ~ J
- The answer is NO ! (as we will see later)
 - mass enhancement occurs at much smaller energy scale
- What determines the smaller new energy scale ?
 - emergent degree of freedom under frustration + correlation

to explore the new mechanism of quasi-particle mass enhancement

Model and Method

Hubbard model on the kagome lattice at half filling

$$\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

- a minimal model including both electron correlation and frustration (Y. Imai *et al.*, 2003; N. Bulut *et al.*, 2005; T. Ohashi *et al.*, 2006; B. H. Bernhard *et al.*, 2007)
- Mott transition at $U_c \sim 8.3t$ (T. Ohashi *et al.*, 2006)

cluster extension of the dynamical mean-field theory

- mapping to cluster impurity models (3 or 9 sites)
- impurity problem solver: continuous-time quantum Monte Carlo method (E. Gull *et al.*, 2008)

Result: Heavy-fermion behavior

(present work)

• To identify the relevant degree of freedom, we calculate density matrix = prob. distribution of quantum mechanical states $\rho_{\Psi} = \frac{1}{Z} \text{Tr} |\Psi\rangle \langle \Psi | e^{-\beta \mathcal{H}}$

Result: Spin chirality degree of freedom

Result: Crossover temperatures

Result: Specific heat and entropy

- charge-spin-chirality separation
 - broad hump in C_v at $T \sim T_{charge}$
 - entropy~log8 at T~ T_{spin}
 - sharp peak in C_v and entropy~log4 at $T \sim T_{\text{chirality}}$
- chirality-driven mass enhancement
 - specific-heat coefficient:

 $\gamma \simeq \frac{1}{3} \log 4 / T_{\rm chiral}$

Discussion

"Folklore" scenario
 Frustration just suppresses magnetic LRO
 ⇒ heavy mass due to spin entropy
 Train Train
 Present mechanism
 Frustration brings about an emergent degree of freedom, chirality
 ⇒ heavy mass due to spin chirality
 Train Train

heavy-mass behavior:

crossover from highly-symmetric local state to renormalized Fermi liquid

emergent composite objects with high local symmetry

chirality, multipole, etc.

Summary

M. Udagawa and YM, Phys. Rev. Lett. 102, 106409 (2010)

- cellular DMFT study of correlated metallic region in the kagome Hubbard model
 ✓ continuous-time QMC
 - ✓ cluster-size dependence
- Emergent degree of freedom, chirality, plays a decisive role at low T.
 - ✓ energy hierarchy
 - \checkmark sharp peak in the specific heat
 - ✓ mass enhancement
- Our results uncover an intensive role of geometrical frustration in correlated metal (not secondary just to suppress LRO).

