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Chirality-driven mass enhancement in
the kagome Hubbard model
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Introduction
• heavy d electrons: Kondo or correlation + frustration?

Model and Method

Results
• energy hierarchy among charge, spin, and chirality
• heavy-mass behavior due to the degeneracy associated with chirality

Summary



Heavy mass: Conventional Kondo physics

heavy-fermion f-electron systems:

hybrid of conduction electrons and 
localized moments

large mass renormalization due to 

screening of localized spins by conduction 
electrons at Kondo temperature T~TK

➡ release of the spin entropy below TK

➡ specific-heat coefficient: 

✓ localized moments = entropy reservoir 

P. Schlottmann, Some exact results for dilute mixed-valent and heavy-fermion systems 77
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Fig. 6.13. Magnetic susceptibility per mole Ce versus T ofCe1.~La~Pb3for x = 0, 0.2, 0.4, 0.6 and 0.8. The inset shows the susceptibility per mole
(not per Ce mole) versus T for the same samples [7].
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Fig. 6.14. (a) Excess specific heat per mole Cedivided by the temperature, ~CIT, versus T2 for Ce
1 ,La~Pb3with x = 0, 0.2, 0.4, 0.6 and 0.8 [7].

LsC is defined in the text. The inset shows the total specific heat divided by T, CIT, versus T
2, for the same samples. (b) Excess specific heat per

mole Ce, ~C, versus log(T/T~),for Ce
1_~La~Pb3with x = 0.4, 0.6 and 0.96 [7]. The solid curve is the S = 112 Kondo specific heat, involving

TK = 3.3 K as the only adjustable parameter (TK is the same for all three curves).
maximum at 2.3 K and are independent of Ce concentration. The solid curve corresponds to the specific
heat of a spin 1/2 Kondo impurity [165—167]with TK = 3.3 K. The agreement with experiment is
remarkable, if we consider that the shape and magnitude of the theoretical curve is parameter
independent (TK just fixes the position of the maximum). For x <0.4 (more than 60% Ce) a slight
upswing is seen below T/TK 0.4 because of magnetic correlations, which eventually lead to magnetic
ordering for the very Ce-rich alloys. However, the large y observed for CePb3 down to T= 1.5 K
appears to be totally attributable to the single-ion Kondo resonance at the Fermi energy.

P. Schlottmann, 1989

γ ∼ log 2/TK



Heavy mass in transition metal oxides: 
Unconventional mass enhancement?

several examples of heavy d electrons

LiV2O4, (Y1-xScx)Mn2, β-Mn, ...

typical: spinel oxide LiV2O4

frustrated pyrochlore lattice of V

no clear sign of phase transition

characteristic temperature T*~20-30K: 
heavy mass behavior at lower T

controversial on the mechanism of heavy 
mass behavior: no obvious entropy reservoir

Kondo ?
electron correlation + frustration ?
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FIG. 1. T dependence of various physical properties of
LiV2O4 single crystal. (a) Resistivity r, (b) specific heat
C divided by T , (c) magnetic susceptibility x, and (d) Hall
coefficient RH. C!T and x data for polycrystalline LiV2O4 are
shown for comparison in (b) and (c), respectively. In the inset
of (a), r of LiV2O4 below 2 K is plotted against T 2.

marked contrast with the polycrystalline results [11,12].
Nevertheless, in C"T #!T and x"T #, shown in Figs. 1(b)
and 1(c), the polycrystalline results by Kondo et al. were
essentially reproduced. C"T #!T shows a noticeable in-
crease below around 30 K and an extrapolation to T ! 0
yields g $ 350 mJ!mol K2. Although this is about 15%
smaller than observed in polycrystalline samples, most
likely due to a subtle difference in the sample quality, it
is still true that the observed g is extraordinarily large.
x"T # [15] shows Curie-Weiss behavior at high T , with a
shallow and broad peak around 16 K. The Curie-Weiss
fitting of x"T # in the T range 100 # T # 300 K gives
a Curie constant CCurie ! 0.34 cm3 K!V mol, which cor-
responds to a S ! 1!2 moment per V ion, and a Curie-
Weiss constant QCW ! 237 K (AF). Combining the g
and x"0# ! 0.88 3 1022 cm3!mol at the T ! 0 limit, a
reasonable Wilson ratio of RW ! 1.8 was obtained, in
agreement with Refs. [6–8].

A further crucial test for the appearance of a heavy-mass
Fermi liquid ground state is the observation of a T2

behavior in r"T #, which is closely linked with the v2 de-
pendence of the inverse quasiparticle lifetime. In the inset
of Fig. 1(a), we show clearly that r"T # indeed follows T2

behavior below 2 K, indicative of a Fermi liquid ground
state. Other possible power laws, such as T1.5 expected
for the AF critical point, were also examined. However, it
turned out that T2 best describes the T dependence below
2 K. The coefficient of the T2 term A ! 2.0 mV cm!K2

is extremely large, consistent with the extraordinary large
g. Indeed, the observed g and A roughly satisfy the
Kadowaki-Woods relation [16], A!g2 $ 1025 mV cm!
K2!"mJ!mol K22#2, which is known to hold for a variety
of strongly correlated Fermi liquids.

As pointed out in previous polycrystalline studies [6–8],
an increase of C"T #!T and a deviation of x"T # from the
Curie-Weiss behavior upon lowering T become apparent
around 20–30 K. In accord with these changes in C"T #!T
and x"T #, the transport properties also show a noticeable
change around the same T range, supporting the existence
of a coherence temperature, T!, below which the coher-
ent heavy-mass quasiparticle states are formed, analogous
with the dense Kondo systems. In r"T # shown in Fig. 1(a),
a pronounced kneelike structure is clearly observed around
30 K, below which r"T # shows a rapid decrease towards
the low temperature T2 behavior with decreasing T . The
Hall coefficient RH"T #, measured under 1.4 T and shown
in Fig. 1(d), is negative in sign and almost T independent
at high T . On decreasing T , however, RH"T # changes sign
around 50 K and develops a strong T dependence with a
pronounced peak below about 30 K. It is noted that this
behavior is surprisingly similar to that typically observed
in heavy fermion intermetallics below their coherence tem-
perature [17].

It is now clear from these results that a heavy-mass
Fermi liquid ground state, with a coherence temperature
T! of 20–30 K, is realized in LiV2O4. The low-T prop-
erties (i.e., below T!) are strikingly similar to those of
intermetallic dense Kondo systems. Unlike dense Kondo
systems, however, it is not obvious to identify two distinct
subsystems, conduction electrons and localized moments
in these spinel compounds. Recent local density approxi-
mation (LDA) band calculations indeed indicate that the
conduction bands, with width 2 eV, are made up almost
entirely of V t2g character. In this context it was pointed
out that the observed heavy quasiparticle mass should be
attributed to some non-Kondo mechanism, for example,
strong AF spin fluctuations due to geometrical frustration
[18,19]. Anisimov et al., in contrast, argued that this sys-
tem can be mapped onto a dense Kondo system [20]. Be-
cause of a small trigonal distortion of the VO6 octahedron,
the V t2g orbitals split into an A1g orbital and doubly de-
generate Eg orbitals, which are more itinerant in character
than the A1g orbital. In their scenario based on LDA 1 U
calculation, among the 1.5 electrons in V t2g orbital, 0.5

1053

J. Kondo et al., 1999
C. Urano et al., 2000

V. I. Anisimov et al., 1999

V. Eyert et al., 1999; H. Tsunetsugu, 2002; Y. Yamashita and K. Ueda, 2003, etc.



Mott criticality (Brinkman-Rice, Gutzwiller, dynamical mean-field, ...)

✓ critical mass enhancement in the paramagnetic solution
✓ local spin fluctuation under strong correlation = entropy reservoir
✓ Usually, all of these are masked by the symmetry breaking

“Folklore”: Frustration suppresses the symmetry breaking and rejuvenates 
the mass enhancement hidden in the ‘bare’ paramagnetic state.

Electron correlation + Frustration: A “folklore”

disappears continuously (at T=0) at a critical value

Uc2/D�2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz

based on the observation that in the ‘‘atomic limit’’ t=0

(U/t=�), the spectral function has a gap equal to U . In

this limit the exact expression of the Green’s function

reads

G� i�n�at�
1/2

i�n�U/2
�

1/2

i�n�U/2
. (232)

Since ImG(��i0�
) also plays the role of the density of

states of the effective conduction electron bath entering

the impurity model, we have to deal with an impurity

embedded in an insulator [�(�=0)=0]. It is clear that an

expansion in powers of the hybridization t does not lead

to singularities at low frequency in this case. This is very

different from the usual expansion in the hybridization

V with a given (flat) density of states that is usually con-

sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the

self-consistency condition) and the gap survives an ex-

pansion in t/U . An explicit realization of this idea is to

make the following approximation for the local Green’s

function (Rozenberg, Zhang, and Kotliar, 1992):

G� i�n��
1/2

G
0

�1� i�n��U/2
�

1/2

G
0

�1� i�n��U/2
, (233)

which can be motivated as the superposition of two mag-

netic Hartree-Fock solutions or as a resummation of an

expansion in �/U . This implies that G(i�)�i� for small

�, and the substitution into the self-consistency condi-

tion implies that G 0

−1�i� , which is another way of say-

ing that the effective bath in the Anderson model pic-

ture has a gap. We know from the theory of an

Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity

model ground state is a doubly degenerate local mo-

ment. Thus, the superposition of two magnetic Hartree-

Fock solutions is qualitatively a self-consistent ansatz. If

this ansatz is placed into Eq. (221), we are led to a

closed (approximate) equation for G(i�n):

D4G3�8D2�G2�4�4�2�D2�U2�G�16��0.

(234)

This approximation corresponds to the first-order ap-

proximation in the equation of motion decoupling

schemes reviewed in Sec. VI.B.4. It is similar in spirit to

the Hubbard III approximation Eq. (173) (Hubbard,

1964), which would correspond to pushing this scheme

one step further. These approximations are valid for

very large U but become quantitatively worse as U is

reduced. They would predict a closure of the gap at

Uc�D for (234) (Uc�)D for Hubbard III). The fail-

ure of these approximations, when continued into the

metallic phase, is due to their inability to capture the

Kondo effect which builds up the Fermi-liquid quasipar-

ticles. They are qualitatively valid in the Mott insulating

phase however.

The spectral density of insulating solutions vanish

within a gap ��g/2�����g/2. Inserting the spectral

representation of the local Green’s function into the self-

consistency relation, Eq. (221) implies that �(�+i0+
)

must be purely real inside the gap, except for a

�-function piece in Im� at �=0, with

Im����i0������2���� for �����g/2,�g/2�
(235)

and that Re� has the following low-frequency behavior:

Re����i0���U/2�
�2

�
�O���. (236)

In these expressions, �2 is given by

1

�2

��
��

��

d�
����

�2 . (237)

�2 can be considered as an order parameter for the insu-

lating phase [the integral in Eq. (237) diverges in the

metallic phase]. A plot of the spectral function and self-

energy in the insulating phase, obtained within the iter-

ated perturbation theory approximation, is also dis-

played in Figs. 30 and 31. The accuracy of these results is

more difficult to assess than for the metal, since exact

diagonalization methods are less efficient in this phase.

A plot of the gap �g vs U estimated by the iterated

perturbation theory and exact diagonalization is given in

Fig. 32. Within both methods, the insulating solution is

found to disappear for U�Uc1(T�0), with Uc1

ED

� 2.15D (while the iterated perturbation theory method

yields Uc1

IPT � 2.6D). As discussed below in more detail

(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density �D�(�) at T=0, for several

values of U , obtained by the iterated perturbation theory ap-

proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,

while the bottom one (U/D=4) is an insulator.

64 A. Georges et al.: Dynamical mean-field theory of . . .
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Kondo-like 
quasi-particle peak

specific heat peak
due to spin entropy

ance of the insulating solution at Uc1, the behavior of
the gap at this point, and the value of Uc1 have not yet
been fully settled.

In summary, the existence of two classes of solutions
of the paramagnetic LISA equations at zero tempera-
ture can be established analytically. Metallic solutions
are characterized by a nonzero density of states �(0)
=D(0) [=2/(�D) for the Bethe lattice], while insulating
solutions have �(0)=0, for both the impurity and the ef-
fective conduction bath at zero frequency. The density of
states at zero energy is an order parameter for this prob-

lem, and can be shown to be self-consistently nonzero
for small U/D and zero for large U/D .

D. Phase diagram and thermodynamics

1. Paramagnetic phases

The qualitative distinction between a metal and an
insulator is precise at zero temperature. At finite but
small temperatures a sharp distinction between a metal-
lic and an insulating solution can still be made in the
present problem, since a region of the (U ,T) parameter
space defined by Uc1(T)�U�Uc2(T) is found where
two paramagnetic solutions are allowed within the
LISA, as shown on Fig. 33 (Georges and Krauth, 1993;
Rozenberg, Kotliar, and Zhang, 1994). This is evidenced
by the plot of the double occupancy �n↑n↓� given in Fig.
34. One of these solutions is continuously connected to
the T=0 metallic solution, and its density of states dis-
plays a peaklike feature at the Fermi energy. The other
solution can be connected to the T=0 insulating solution,
and the Green’s function extrapolates to zero at zero
frequency. As the temperature is further increased, this
region of coexistent solutions disappears and we are left
with a rapid crossover from a metallic-like solution to an
insulating-like one. This is possible because at finite tem-
perature there is no qualitative distinction between a
metallic and an insulating state. The two lines Uc1(T)
and Uc2(T) defining the coexistence region merge at a
second-order critical point (Fig. 33). The actual metal-
insulator transition at finite temperature is first order,
and takes place at the coupling Uc(T) where the free
energy of the two solutions cross. Note that this is the
case even though no lattice deformations have been in-
cluded in the model. For early discussions of the occur-
rence of a first-order metal-insulator transition at finite
temperature in the Hubbard model, see the works of
Cyrot (1972); Castellani, DiCastro, Feinberg, and Ran-
ninger (1979); Spalek, Datta, and Honig, 1987); Spalek

FIG. 31. Real and imaginary parts of the self-energy �(�+i0+),
as obtained from the iterated perturbation theory approxima-
tion, for a value of U/D=4 in the insulating phase. The inset
contains the same quantities on a larger scale that shows the
1/� singularity in Re�.

FIG. 32. Paramagnetic gap (solid line) as a function of the
interaction U obtained from exact diagonalization. For com-
parison, the corresponding results from iterated perturbation
theory (dotted line) and the value of Uc1

H III � )D within the
Hubbard III approximation (diamond) are also shown.

FIG. 33. Phase diagram of the fully frustrated model at half-
filling. It is possible to move continuously from one phase to
the other since at high temperature the transition becomes a
crossover. Within the region delimited by the dashed lines, the
metallic and insulating solutions coexist. The full line is the
approximate location of the actual first-order transition line.
Both ends of this line [at the full square and at Uc2(T)=0] are
second-order points.

65A. Georges et al.: Dynamical mean-field theory of . . .
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A. Georges et al., 1993, 1996
M. J. Rozenberg et al., 1994
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On the other hand, 
in the frustrated case...

Caveat...

Even in the paramagnetic solution, 
the quasi-particle peak is fragile 
against spatial correlations. 4
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FIG. 3: (Color online) The spectral density A (k, ω) (a), real
ReΣ (k, ω) (b), and imaginary ImΣ (k, ω) (c) parts of the self-
energy at the Fermi surface X point k = (π, 0) for a 4-site
cluster at various values of U on square lattice. As U in-
creases, a pseudogap develops in A (k, ω). A positive slope
in ReΣ (k, ω) and a local minimum in ImΣ (k, ω) at ω = 0
indicate the breakdown of the Fermi-liquid behavior.(d) Den-
sity plot of A(k, 0) on square lattice in the metallic region at
U=3.3t.The Lorentzian broadening factor is 0.1t

ing at the metal-insulator transition is cooperatively en-
hanced by the Slater mechanism ascribed to the antifer-
romagnetic order.

As is seen from Fig. 1, there still exists a small dif-
ference between the results of 3 sites (odd number) and
2-/4 sites (even number). The central peak persists to a
larger value of U for the odd than for even sites. This
may be due to the fact that the sharp coherent peak is as-
sociated with residual entropy arising from the unpaired
spin (spin doublet structure) induced in odd number of
sites as is expected in 1- and 3-site clusters.

In Fig. 2 (a) we also show the quasiparticle residue on
the Fermi surface with increasing U obtained from the
4-site CDMFT approach. The most prominent differ-
ence from the single-site DMFT where the quasiparticle
residue at the Fermi level vanishes continuously toward
the transition point is that it decreases but remains at a
nonzero value until new twin poles appear in the vicin-
ity of the Fermi level at each k point. Then the MIT is
characterized by escape of the quasiparticle poles away
from the Fermi level resulting in a discontinuous jump
of Z to zero, instead of the complete transfer of spectral
weight from the well-seperated central peak to the upper
and lower Hubbard bands. This is consistent with the
recent study by the correlator projection theory22. From
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FIG. 4: (Color online) (a) and (b) are DOS of Hubbard model
on half-filled cubic lattice, obtained from CDMFT approach
with cluster size up to 4. (a) is the 1-site CDMFT which re-
produce the results of single-site DMFT. (b) is 4-site CDMFT.
The central peak splits into a twin-peak structure around
Fermi level similarly to the square lattice. Here we take the
broadening factor 0.1t.

the CDMFT approach, the quasiparticle residue becomes
k-dependent along the Fermi surface. The residue in-
creases monotonically from (π, 0) to (π/2, π/2) at a given
U . Therefore, we only show two k points at Fermi surface
in Fig. 2 (a). In Fig. 2 (b), no jump is detected in all the
correlations, indicating that the splitting of the quasipar-
ticle poles at the Fermi surface into the twin poles in the
vicinity of it is continuous.

It is interesting to see whether the results qualitatively
change if the dimensionality increases to three. We show
in Fig. 4 the DOS for half-filled cubic lattice by using 1-
site and 4-site CDMFT approaches. No qualitative dif-
ference is found between square and cubic lattices. A
twin-peak structure around the Fermi level is found by 4-
site CDMFT approach as U increases (see U = 7t). The
k-dependent quasiparticle residue, as shown in Fig. 2
(a), remains nonzero at the proximity of the point where
the Fermi-liquid behavior breaks down while the value is
smaller than that of square lattice indicating a crossover
to infinite dimension where the quasiparticle residue at
Fermi level should continuously vanish.

The results on the cubic lattice are relevant to the
recent high-resolution bulk-sensitive PES of SrVO3 and
CaVO3. At finite temperature T = 6K and with the en-
ergy resolution 8meV, a peak around 0.2eV is observed
with a pseudogap structure in qualitative but essential

Y. Z. Zhang and M. Imada, 2007

Each unit cell of the kagomé lattice has three sites labeled
by 1, 2, and 3, as shown in Fig. 1(a). We thus end up with a
three-site cluster model coupled to the self-consistently
determined medium illustrated in Fig. 1(b). Given the
Green function for the effective medium, Ĝ!, we can
compute the cluster Green function Ĝ! and the cluster
self-energy !̂! by solving the effective cluster model
with the QMC method [12]. Here, Ĝ!, Ĝ!, and !̂! are
described by 3! 3 matrices. The effective medium Ĝ! is
then computed via the Dyson equation,

 Ĝ "1
! #!$ %

!X

k

1

!&"" t̂#k$ " !̂!#!$

""1
& !̂!#!$;

(2)

where " is the chemical potential and t̂#k$ is the Fourier-
transformed hopping matrix for the superlattice. Here the
summation of k is taken over the reduced Brillouin zone of
the superlattice [see Fig. 1(c)]. We have generated k points
on the hexagonal grid and systematically increased their
number until the results converge with accuracy <10"6.
The number of k points depends on the physical parame-
ters, and, for example, it is typically '25 000 at T % 1=80.
After 20 times iteration of this procedure, numerical con-
vergence is reached. In each iteration, we typically use 106

QMC sweeps and Trotter time slices L % 2W=T to reach
sufficient computational accuracy. Furthermore, we exploit
an interpolation scheme based on a high-frequency expan-
sion of the discrete imaginary-time Green function ob-
tained by QMC methods [13] in order to reduce time
slice errors.

Let us now investigate the Mott transition of the kagomé
lattice Hubbard model at half filling. In Fig. 2, we show the
results for the double occupancy Docc % hni"ni#i at various
temperatures. At high temperatures, Docc smoothly de-
creases as U increases, indicating the development of local
spin moments. As the temperature is lowered, there ap-
pears singular behavior around characteristic values of U.
When 1=50 ( T=W ( 1=20, Docc shows crossover behav-
ior at U=W ' 1:35. At lower temperature T=W % 1=80,

the crossover is changed to the discontinuity accompanied
by hysteresis, which signals a first-order phase transition at
Uc=W ' 1:37. This is the first demonstration of the Mott
transition in the kagomé lattice Hubbard model. Note that
the critical interaction strength Uc is much larger than the
crossover strength of U found for the unfrustrated square
lattice [14]. As is the case for the triangular lattice [11], the
double occupancy Docc increases in the metallic phase
(U <Uc) as T decreases, while it is almost independent
of T in the insulating phase (U >Uc). The increase of Docc
at low temperatures means the suppression of the local
moments due to the itinerancy of electrons, in other words,
the formation of quasiparticles. Note that in the metallic
phase close to the transition point, the increase of Docc
occurs at very low temperatures. This implies that the
coherence temperature TC that characterizes the formation
of quasiparticles is very low. This naturally causes strong
frustration and, as shown below, brings about unusual
metallic properties near the Mott transition.

To see how the quasiparticles evolve around the Mott
transition point clearly, we calculate the density of states
(DOS) by applying the maximum entropy method [15] to
the imaginary-time QMC data. In Fig. 3, we show the DOS
at T=W % 1=80 for several values of the interaction U=W.
In the noninteracting case (U % 0), the DOS has three
distinct bands including a #-function peak above the
Fermi level. With increasing U=W, the DOS forms heavy
quasiparticle peaks around the Fermi level and eventually
develops a dip at U=W ' 1:40, signaling the Mott transi-
tion. There are two characteristic properties in the metallic
phase close to the critical point. First, we note that heavy
quasiparticles persist up to the transition point (U=W %
1:30 and 1.36) and that there is no evidence for the pseu-
dogap formation, which is consistent with the U and T
dependence of the double occupancy in Fig. 2. This is
related to the suppression of magnetic instabilities in our
system, in contrast to the square lattice case, where the
quasiparticle states are strongly suppressed and a pseudo-
gap opens. The second point to be noticed is how strongly
the renormalization occurs near the critical point. One can
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FIG. 2 (color online). Double occupancy as a function of
interaction strength U=W. At T=W % 1=80, we can see the
discontinuity with hysteresis, indicating the first-order Mott
transition.
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3-site CDMFT for 
kagome Hubbard model

What is the ‘true’ role 
of frustration?



Objectives

to clarify the role of frustration in correlated metals

๏ secondary role, just to suppress the spatial correlations ?

➡ If yes, mass enhancement occurs in the energy scale of spin ~ J

๏ The answer is NO ! (as we will see later)

➡ mass enhancement occurs at much smaller energy scale

๏ What determines the smaller new energy scale ?

➡ emergent degree of freedom under frustration + correlation

to explore the new mechanism of quasi-particle mass enhancement



Model and Method

Hubbard model on the kagome lattice at half filling

๏ a minimal model including both electron 
correlation and frustration (Y. Imai et al., 2003;        
N. Bulut et al., 2005; T. Ohashi et al., 2006;                    
B. H. Bernhard et al., 2007)

๏ Mott transition at Uc~8.3t (T. Ohashi et al., 2006)

cluster extension of the dynamical mean-field theory

๏ mapping to cluster impurity models (3 or 9 sites)

๏ impurity problem solver: continuous-time 
quantum Monte Carlo method (E. Gull et al., 2008)

H = −t
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�ij�σ

(c†iσcjσ + h.c.) + U
�

i

ni↑ni↓
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Result: Heavy-fermion behavior

schematic phase diagram at half filling

Each unit cell of the kagomé lattice has three sites labeled
by 1, 2, and 3, as shown in Fig. 1(a). We thus end up with a
three-site cluster model coupled to the self-consistently
determined medium illustrated in Fig. 1(b). Given the
Green function for the effective medium, Ĝ!, we can
compute the cluster Green function Ĝ! and the cluster
self-energy !̂! by solving the effective cluster model
with the QMC method [12]. Here, Ĝ!, Ĝ!, and !̂! are
described by 3! 3 matrices. The effective medium Ĝ! is
then computed via the Dyson equation,

 Ĝ "1
! #!$ %

!X

k

1

!&"" t̂#k$ " !̂!#!$

""1
& !̂!#!$;

(2)

where " is the chemical potential and t̂#k$ is the Fourier-
transformed hopping matrix for the superlattice. Here the
summation of k is taken over the reduced Brillouin zone of
the superlattice [see Fig. 1(c)]. We have generated k points
on the hexagonal grid and systematically increased their
number until the results converge with accuracy <10"6.
The number of k points depends on the physical parame-
ters, and, for example, it is typically '25 000 at T % 1=80.
After 20 times iteration of this procedure, numerical con-
vergence is reached. In each iteration, we typically use 106

QMC sweeps and Trotter time slices L % 2W=T to reach
sufficient computational accuracy. Furthermore, we exploit
an interpolation scheme based on a high-frequency expan-
sion of the discrete imaginary-time Green function ob-
tained by QMC methods [13] in order to reduce time
slice errors.

Let us now investigate the Mott transition of the kagomé
lattice Hubbard model at half filling. In Fig. 2, we show the
results for the double occupancy Docc % hni"ni#i at various
temperatures. At high temperatures, Docc smoothly de-
creases as U increases, indicating the development of local
spin moments. As the temperature is lowered, there ap-
pears singular behavior around characteristic values of U.
When 1=50 ( T=W ( 1=20, Docc shows crossover behav-
ior at U=W ' 1:35. At lower temperature T=W % 1=80,

the crossover is changed to the discontinuity accompanied
by hysteresis, which signals a first-order phase transition at
Uc=W ' 1:37. This is the first demonstration of the Mott
transition in the kagomé lattice Hubbard model. Note that
the critical interaction strength Uc is much larger than the
crossover strength of U found for the unfrustrated square
lattice [14]. As is the case for the triangular lattice [11], the
double occupancy Docc increases in the metallic phase
(U <Uc) as T decreases, while it is almost independent
of T in the insulating phase (U >Uc). The increase of Docc
at low temperatures means the suppression of the local
moments due to the itinerancy of electrons, in other words,
the formation of quasiparticles. Note that in the metallic
phase close to the transition point, the increase of Docc
occurs at very low temperatures. This implies that the
coherence temperature TC that characterizes the formation
of quasiparticles is very low. This naturally causes strong
frustration and, as shown below, brings about unusual
metallic properties near the Mott transition.

To see how the quasiparticles evolve around the Mott
transition point clearly, we calculate the density of states
(DOS) by applying the maximum entropy method [15] to
the imaginary-time QMC data. In Fig. 3, we show the DOS
at T=W % 1=80 for several values of the interaction U=W.
In the noninteracting case (U % 0), the DOS has three
distinct bands including a #-function peak above the
Fermi level. With increasing U=W, the DOS forms heavy
quasiparticle peaks around the Fermi level and eventually
develops a dip at U=W ' 1:40, signaling the Mott transi-
tion. There are two characteristic properties in the metallic
phase close to the critical point. First, we note that heavy
quasiparticles persist up to the transition point (U=W %
1:30 and 1.36) and that there is no evidence for the pseu-
dogap formation, which is consistent with the U and T
dependence of the double occupancy in Fig. 2. This is
related to the suppression of magnetic instabilities in our
system, in contrast to the square lattice case, where the
quasiparticle states are strongly suppressed and a pseudo-
gap opens. The second point to be noticed is how strongly
the renormalization occurs near the critical point. One can
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FIG. 2 (color online). Double occupancy as a function of
interaction strength U=W. At T=W % 1=80, we can see the
discontinuity with hysteresis, indicating the first-order Mott
transition.
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To identify the relevant degree of freedom, we calculate

density matrix = prob. distribution of quantum mechanical states
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Result: Spin chirality degree of freedom

density matrix of 3-site triangle
(3-electron sector)

U/t=6.0

+ +

doubly-occupied state

↓double occupancy (charge)
↓spin

↓chirality

ω = exp(i 2
3π)

+ ω + ω2

3-site chiral state (4 fold)

spin polarized (4 fold)
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Result: Crossover temperatures
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energy hierarchy among charge, spin, and chirality

quasi-particle peak in DOS develops below Tchiral

➡ chirality-driven heavy fermion state
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Tcharge ∼ U −W ∗ > Tspin ∼ αJ > Tchiral



Result: Specific heat and entropy

T/t

U=6

U=0

U=6
U=0

1
3 log 8
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3 log 4

specific heat

Cv

S

charge-spin-chirality separation

- broad hump in Cv at T~Tcharge

- entropy~log8 at T~Tspin

- sharp peak in Cv and entropy~log4 
at T~Tchirality

chirality-driven mass enhancement

- specific-heat coefficient:
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“Folklore” scenario
Frustration just suppresses magnetic LRO
➡ heavy mass due to spin entropy

Present mechanism
Frustration brings about an emergent degree of freedom, chirality
➡ heavy mass due to spin chirality

heavy-mass behavior:
crossover from highly-symmetric local state to renormalized Fermi liquid

Discussion

Tspin Tcharge

Tspin TchargeTchiral

emergent composite objects 
with high local symmetry chirality, multipole, etc.



Summary

cellular DMFT study of correlated metallic 
region in the kagome Hubbard model
✓ continuous-time QMC
✓ cluster-size dependence

Emergent degree of freedom, chirality, 
plays a decisive role at low T.

✓ energy hierarchy
✓ sharp peak in the specific heat
✓mass enhancement

Our results uncover an intensive role of 
geometrical frustration in correlated metal 
(not secondary just to suppress LRO). 
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