Non-Classical Rotational Inertia in Two-Dimensional ⁴He Solid on Graphite

Yoshiyuki Shibayama Department of Physics, Keio University

Collaborators

Hiroshi FukuyamaThe University of TokyoKeiya ShirahamaKeio University

Zero-point vacancies (ZPVs) in a quantum solid and superfluidity of ZPVs

(A. F. Andreev and I. M. Lifshitz, Sov. Pys. JETP, 29, 1107 ('69))

 Vacancies in a quantum solid are delocalized in the solid due to the zero-point fluctuation → Bloch state of the vacancies

 At 0 K, a finite density of vacancies exists in a quantum solid when the band-width is large enough.

→ Zero-point vacancies (ZPVs)

- The ZPVs in solid ⁴He are Bose particles.
 - → Bose-Einstein condensation of ZPVs at low temperatures, leading to superfluidity of ZPVs in a bosonic quantum solid.

This scenario is one of the theoretical predictions of ZPVs and supersolidity due to the ZPVs in a quantum solid.

Experimental discovery of NCRI in solid ⁴He

(E. Kim and M. H. W. Chan, Nature, 427, 225 ('04); Science, 305, 1941 ('04).)

- •By torsional oscillator (TO) studies, Kim and Chan discovered non-classical rotational inertia (NCRI) in solid ⁴He. 2
- The supersolid behaviors depend on sample preparation:
 ✓ Cooling rate in sample preparation
 ✓ Geometry of the sample cell (S / V)
 ✓ Annealing effects

 These strongly suggest that crystal imperfections in the solid samples, such as dislocation lines or grain boundaries, are strongly associated with the observed supersolid behaviors.

 If it is true, the supersolid behavior cannot be expected in a perfect ⁴He crystal at 0 K. The simple ZPVs scenario does not describe the observed behaviors.

Two-dimensional (2D) ³He system on graphite

Y. Matsumoto, D. Tsuji, S. Murakawa, H. Akisato, H. Kambara, and H. Fukuyama, *JLTP*, **138**, 271 ('05).

The existence of ZPVs has been proposed in 2D ³He on graphite

The 1st layer : ⁴He monolayer of 12.03 nm⁻²
 The 2nd layer : ³He submonolayer

 \rightarrow 2D Fermi system

At the low density region → 2D Fermi fluid
At the four sevenths density ρ_{4/7} (6.85 nm⁻²) → registered 4/7 phase (2D solid ³He)
At just below ρ_{4/7} → a novel quantum phase

a Mott localized phase doped with ZPVs $\frac{1}{2}$

•The thermodynamic properties of the phase demonstrate **delocalization of ZPVs** in the 2D ³He solid.

•The proposal of the mobile ZPVs in 2D ³He solid suggests that **mobile ZPVs also exist in 2D** ⁴He solid.

•Superfluidity of the ZPVs, namely supersolidity, is expected because the ZPVs in solid ⁴He are Bose particles.

•Crowell and Reppy (CR) have found a peculiar superfluid behavior for the ⁴He films on graphite at the coverage between 17 and 19 nm⁻²

(Crowell and Reppy, *PRL***70**, 3291 ('93); *PRB***53**, 2701 ('96)) 4/7 phase (6.85 nm⁻²)

• The aim of the present investigation Motivation:

•The origin of the peculiar superfluid behavior observed by Crowell and Reppy.

•As in the 2D ³He system on graphite, do **ZPVs exist** in a 2D ⁴He system?

Experimental:

•By **TO studies, possible ZPVs** and **2D supersolid state** in **adsorbed** ⁴**He films on graphite** are investigated.

•Frequency shift Δf of the TO is investigated at various ⁴He coverage in order to confirm the **reentrant** Δf observed by CR,

•Oscillation velocity v_{osc} dependence of NCRI is examined.

Setup of the torsional oscillator (TO) •Graphite substrate: Grafoil (surface area: 21.68 m³) ⁴He 28 mm •Commercial ⁴He gas The TO made of BeCu resonance frequency : $f \sim 1043.9 \text{ Hz}$ Q-value : $Q = 3.0 \times 10^6$ at 10 mK κ : torsion spring constant $f = \frac{1}{2\pi} \sqrt{\frac{\kappa}{I_{\text{cell}} + I_{\text{He}}}} I_{\text{cell}}$ I_{cell} : inertia momentum of the sample cell and substrate $I_{\rm He}$: inertia momentum of adsorbed ⁴He 60 mm torsion rod. OD 1mm, empty cell ID 0.7 mm, 10 mm length Δf Grafoil (\u00f610.5) with liquid ⁴He in a Cu cell 0 K T_c

electrodes for drive and pick up

• Frequency shift Δf at $v_{osc} \sim 100 \ \mu m/s$

- Up to 18 atoms/nm²
- At 18.19 atoms/nm²
- 18 -19 atoms/nm²
- Over ~19 atoms/nm²

no $\Delta f \rightarrow$ inert layer a finite Δf is observed **reentrant behavior in \Delta f** increase in Δf with the coverage superfluidity of liquid films

• Δf at 10 mK as a function of ⁴He coverage

• Reentrant frequency shift is observed at 18 - 19 atoms/nm².

 \rightarrow Our observation is in agreement

with the results by Crowell and Reppy (CR).

• In the present studies a finite Δf is observed at 19 - 20 atoms/nm², while no Δf was observed at the coverage by CR.

Oscillation velocity v_{osc} dependence of \Delta f for 21.47 and 18.68 atoms/nm² samples

- 21.47 atoms/nm² sample
 - \rightarrow The size of Δf is independent of the $v_{\rm osc}$ up to 1000 μ m/s.
- 18.68 atoms/nm² sample (reentrant Δf)
 - \rightarrow The Δf seems to decrease with the $v_{\rm osc}$.

The *v*-dependent Δf is a common feature to NCRI of bulk solid ⁴He. The Δf in the reentrant region is associated with **a 2D supersolid state**.

 Ov_{osc} dependence of Δf for 18.68 atoms/nm² sample

- In the low $v_{\rm osc}$ region, the Δf seems to be independent of $v_{\rm osc}$.
- In the high v_{osc} region (over ~500 µm/s), the Δf is suppressed. But a finite Δf is observed at even 5000 µm/s, which differs from the behavior of NCRI in 3D solid ⁴He.

Nyéki, *et al.* have reported that Δf is independent of v_{osc} up to 500 µm/s (2009 APS, J. Saunders' Group, Royal Holloway Univ. of London)

\rightarrow This might be characteristic behavior in 2D supersolid state.

NCRI fraction for 18.68 atoms/nm² sample

	coverage	reduction in <i>f</i> by ⁴ He adsorption	empty cel
Total	18.68 atoms/nm ²	162.5 mHz	1st layer
1st layer	12.0 atoms/nm ²	104.4 mHz	∆f 2st layer
2nd layer	6.68 atoms/nm ²	58.11 mHz	

•The 2nd layer reduces the *f* by 58.11 mHz

- • Δf at low T and at low v_{osc} is ~0.3 mHz \rightarrow The NCRI fraction in the 2nd layer: 0.3 mHz / 58.11 mHz ~ 0.52%
- •Surface **tortuosity factor**, *χ*, of Grafoil is ~0.98 for ⁴He superfluid films (Crowell and Reppy, *PRB***53**, 2701 ('96))

 \rightarrow Only 2% of total NCRI value is observable by TO study

•If the χ factor for the present system is same value, the total NCRI fraction is 0.52%/0.02 = 26%.

\rightarrow 26% of the 2nd layer is decoupled from the substrate.

Estimate of the density of the ZPVs

- On the assumption that the ZPVs exist in the present 2D ⁴He, how high is the areal density of the ZPVs in the present system?
- Density of the 4/7 phase

the 1st ⁴He layer \rightarrow 12 atoms/nm² 4/7 density of the 1st layer \rightarrow 6.85 atoms/nm²

• Density of the 2nd layer for the present $18.68 \text{ atoms/nm}^2 \text{ sample}$ $\rightarrow (18.68 - 12) \text{ atoms/nm}^2 = 6.68 \text{ atoms/nm}^2$

The density of the ZPVs =(6.85 - 6.68) / 6.85 ~ 2.5%

According to path integral quantum Monte Carlo simulation by Takagi (Fukui University, Japan), the 4/7 phase is unstable over ~ 2% of the vacancy doping.

Summary

 In order to investigate the possible ZPVs and 2D supersolid state, TO studies were carried out for adsorbed ⁴He films on graphite.

•**Peculiar** Δf (reentrant feature) was observed

in the coverage between 18 and 19 atoms/nm². This is in agreement with the results by CR.

•The size of Δf at 18 and 19 atoms/nm² decreases with the v_{osc} , while the Δf over 19 atoms/nm² is independent of the velocity.

The **v-dependent** Δf is a common feature to the case of bulk solid ⁴He. \rightarrow The reentrant Δf is associated with 2D supersolid state.

•At even 5000 μ m/s, a finite frequency shift is observed. \rightarrow Characteristic behavior in 2D supersolid state?

- •The NCRI fraction of the 18.68 atoms/nm² sample is about 0.52%. This suggests that **26% of the 2nd layer is decoupled**.
- •In the present sample, the density of ZPVs is 2.5%.

atoms/nm²

Greywall and Busch, *PRL***67**, 3535 (91), Greywall, *PRB***47**, 309 ('93): heat capacity Crowell and Reppy, *PRB***53**, 2701 ('96): TO

